Co-Altria/Co-Altria Ped

Co-Altria/Co-Altria Ped Mechanism of Action

Manufacturer:

Ajanta Pharma Phil

Distributor:

Ajanta Pharma Phil
Full Prescribing Info
Action
Leukotriene Receptor Antagonist/Antihistamine.
Pharmacology: Pharmacodynamics: Montelukast: The cysteinyl leukotrienes (LTC4, LTD4, LTE4) are potent inflammatory eicosanoids released from various cells including mast cells and eosinophils. These important pro-asthmatic mediators bind to cysteinyl leukotriene (CysLT) receptors. The CysLT type-1 (CysLT1) receptor is found in the human airway (including airway smooth muscle cells and airway macrophages) and on other pro-inflammatory cells (including eosinophils and certain myeloid stem cells). CysLTs have been correlated with the pathophysiology of asthma and allergic rhinitis.
In allergic rhinitis, CysLTs are released from the nasal mucosa after allergen exposure during both early- and late-phase reactions and are associated with symptoms of allergic rhinitis. Intranasal challenge with CysLTs has been shown to increase nasal airway resistance and symptoms of nasal obstruction.
Montelukast is an orally active compound that binds with high affinity and selectivity to the CysLT1 receptor. Montelukast inhibits physiologic actions of LTD4 at the CysLT1 receptor without any agonist activity.
Levocetirizine: Levocetirizine, the (R) enantiomer of cetirizine, is a potent and selective antagonist of peripheral H1-receptors.
Binding studies revealed that levocetirizine has high affinity for human H1-receptors (Ki = 3.2 nmol/l). Levocetirizine has an affinity 2-fold higher than that of cetirizine (Ki = 6.3 nmol/l). Levocetirizine dissociates from H1-receptors with a half-life of 115 ± 38 min.
After single administration, levocetirizine shows a receptor occupancy of 90% at 4 hours and 57% at 24 hours.
Pharmacodynamic studies in healthy volunteers demonstrate that, at half the dose, levocetirizine has comparable activity to cetirizine, both in the skin and in the nose.
Co-Altria Ped: The onset of action of Levocetirizine 5 mg in controlling pollen-induced symptoms has been observed at 1 hour post drug intake in placebo controlled trials in the model of the allergen challenge chamber.
In vitro studies (Boyden chambers and cell layers techniques) show that Levocetirizine inhibits eotaxin-induced eosinophil transendothelial migration through both dermal and lung cells. A pharmacodynamic experimental study in vivo (skin chamber technique) showed three main inhibitory effects of Levocetirizine 5 mg in the first 6 hours of pollen-induced reaction, compared with placebo in 14 adult patients: Inhibition of VCAM-1 release, modulation of vascular permeability, and a decrease in eosinophil recruitment.
Pharmacodynamic studies in healthy volunteers demonstrate that, at half the dose, Levocetirizine has comparable activity to cetirizine, both in the skin and in the nose.
Pharmacokinetic/pharmacodynamic relationship: 5 mg Levocetirizine provide a similar pattern of inhibition of histamine-induced wheal and flare than 10 mg cetirizine. As for cetirizine, the action on histamine-induced skin reactions was out of phase with the plasma concentrations. ECGs did not show relevant effects of Levocetirizine on QT interval.
Pharmacokinetics: Montelukast: Absorption: Montelukast is rapidly absorbed following oral administration. For the 10 mg film-coated tablet, the mean peak plasma concentration (Cmax) is achieved 3 hours (Tmax) after administration in adults in the fasted state. The mean oral bioavailability is 64%. The oral bioavailability and Cmax are not influenced by a standard meal. Safety and efficacy were demonstrated in clinical trials where the 10 mg film-coated tablet was administered without regard to the timing of food ingestion.
For the 5 mg chewable tablet, the Cmax is achieved in 2 hours after administration in adults in the fasted state. The mean oral bioavailability is 73% and is decreased to 63% by a standard meal.
Distribution: Montelukast is more than 99% bound to plasma proteins. The steady-state volume of distribution of montelukast averages 8-11 litres. Studies in rats with radiolabelled montelukast indicate minimal distribution across the blood-brain barrier. In addition, concentrations of radiolabelled material at 24 hours post-dose were minimal in all other tissues.
Biotransformation: Montelukast is extensively metabolised. In studies with therapeutic doses, plasma concentrations of metabolites of montelukast are undetectable at steady state in adults and children.
Cytochrome P450 2C8 is the major enzyme in the metabolism of montelukast. Additionally CYP 3A4 and 2C9 may have a minor contribution, although itraconazole, an inhibitor of CYP 3A4, was shown not to change pharmacokinetic variables of montelukast in healthy subjects that received 10 mg montelukast daily. Based on in vitro results in human liver microsomes, therapeutic plasma concentrations of montelukast do not inhibit cytochromes P450 3A4, 2C9, 1A2, 2A6, 2C19, or 2D6. The contribution of metabolites to the therapeutic effect of montelukast is minimal.
Co-Altria: Elimination: The plasma clearance of montelukast averages 45 ml/min in healthy adults. Following an oral dose of radiolabelled montelukast, 86% of the radioactivity was recovered in 5-day faecal collections and <0.2% was recovered in urine. Coupled with estimates of montelukast oral bioavailability, this indicates that montelukast and its metabolites are excreted almost exclusively via the bile.
Co-Altria Ped: Metabolism: Montelukast is extensively metabolized. In studies with therapeutic doses, plasma concentrations of metabolites of Montelukast are undetectable at steady state in adults and pediatric patients.
Elimination: The plasma clearance of montelukast averages 45 ml/min in healthy adults. Following an oral dose of radiolabelled montelukast, 86% of the radioactivity was recovered in 5-day faecal collections and <0.2% was recovered in urine. Coupled with estimates of montelukast oral bioavailability, this indicates that montelukast and its metabolites are excreted almost exclusively via the bile.
In several studies, the mean plasma half-life of Montelukast ranged from 2.7 to 5.5 hours in healthy young adults. The pharmacokinetics of Montelukast is nearly linear for oral doses up to 50 mg. During once-daily dosing with 10 mg Montelukast, there is little accumulation of the parent drug in plasma (14%).
Levocetirizine: The pharmacokinetics of levocetirizine are linear with dose- and time-independent with low inter-subject variability. The pharmacokinetic profile is the same when given as the single enantiomer or when given as cetirizine. No chiral inversion occurs during the process of absorption and elimination.
Absorption: Levocetirizine is rapidly and extensively absorbed following oral administration. In adults, peak plasma concentrations are achieved 0.9 h after dosing. Steady state is achieved after two days. Peak concentrations are typically 270 ng/ml and 308 ng/ml following a single and a repeated 5 mg o.d. dose, respectively. The extent of absorption is dose-independent and is not altered by food, but the peak concentration is reduced and delayed.
Distribution: No tissue distribution data are available in humans, neither concerning the passage of levocetirizine through the blood-brain-barrier. In rats and dogs, the highest tissue levels are found in liver and kidneys, the lowest in the CNS compartment.
In humans, levocetirizine is 90% bound to plasma proteins. The distribution of levocetirizine is restrictive, as the volume of distribution is 0.4 l/kg.
Biotransformation: The extent of metabolism of levocetirizine in humans is less than 14% of the dose and therefore differences resulting from genetic polymorphism or concomitant intake of enzyme inhibitors are expected to be negligible. Metabolic pathways include aromatic oxidation, N- and O-dealkylation and taurine conjugation. Dealkylation pathways are primarily mediated by CYP 3A4 while aromatic oxidation involved multiple and/or unidentified CYP isoforms. Levocetirizine had no effect on the activities of CYP isoenzymes 1A2, 2C9, 2C19, 2D6, 2E1 and 3A4 at concentrations well above peak concentrations achieved following a 5 mg oral dose.
Due to its low metabolism and absence of metabolic inhibition potential, the interaction of levocetirizine with other substances, or vice-versa, is unlikely.
Elimination: The plasma half-life in adults is 7.9 ± 1.9 hours. The half-life is shorter in small children.
The mean apparent total body clearance in adults is 0.63 ml/min/kg. The major route of excretion of levocetirizine and metabolites is via urine, accounting for a mean of 85.4% of the dose. Excretion via faeces accounts for only 12.9% of the dose. Levocetirizine is excreted both by glomerular filtration and active tubular secretion.
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Already a member? Sign in
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Already a member? Sign in